CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
QUESTIONS AND SOLUTIONS
PART-A
1.Find the value of $ f(c) $ if $ f(x+2)=(x+1)^{34}-(x+1)^{35}+5 $
(A) 5
(B) 7
(C) 6
(D) 72
2.the shortest distance between the parallel lines A and B in the following figure
(A) $\sqrt{2} $
(B) 2
(C) $2\sqrt{2} $
(D) $ 2\sqrt{3} $
Solution
PART-B
1.$ f:N\rightarrow N $ be bounded function.which the following statement is NOT true?
(A) $ {\lim}_{x \to \infty }\sup f(n) \in N $
(B) $ \lim_{x \to \infty }\inf f(n) \in N $
(C) $ \lim_{x \to \infty }\inf( f(n)+n) \in N $
(D) $ \lim_{x \to \infty }\sup( f(n)+n) \notin N $
Solution Click Here
2.Let A and B be $ 2\times 2 $ matrices.then which of the following is true?
(A) det(A+B)+det(A-B)=detA+detB
(B)det(A+B)+det(A-B)=2detA-2detB
(C) det(A+B)+det(A-B)=2detA+2detB
(D)det(A+B)-det(A-B)=2detA-2detB
3.if $ A= \begin{bmatrix}
3& -2\\
2 & -1
\end{bmatrix} $, then $ A^{20} $ equals
(A) $ \begin{bmatrix} 41 & 40 \\ -40 & -39 \end{bmatrix} $
(B)$ \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix} $
(C) $ \begin{bmatrix} 41 & -40 \\ -40 & -39 \end{bmatrix} $
(D) $ \begin{bmatrix} 41 & 40 \\ 40 & -39 \end{bmatrix} $
4.Let A be a $ 2 \times 2 $ real matrix with $ \det A=1 $ and trace A=3.what is the value of trace $ A^2$
(A) 2
(B)10
(C) 9
(D) 7
Solution Click Here
5. Which of the following real quadratic forms on $R^2$ is positive definite
(A) $Q(X,Y)=XY$
(B) $Q(X,Y)=(X^2+XY)$
(C)$Q(X,Y)=X^2+2XY+Y^2$
(D) $Q(X,Y)=X^2-XY+Y^2$
Solution Click Here
6.Let $\gamma$ be the positively oriented circle in the complex plane given by $\lbrace Z \in C : \vert Z-1 \vert =1 \rbrace $ then $\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z^3-1}$ equals
(A) 3
(B) 1/3
(C)2
(D) 1/2
Solution Click Here
7.The maximum and minimum values of $5x+7y$,when $\vert x\vert +\vert y \vert \leq 1$
(A) $5$and $-5$
(B) $5$and $-7$
(C) $7$and $-5$
(D) $7$and $-7$
Solution Click Here
8.Let $\gamma$ be the positively oriented circle in the complex plane given by $\lbrace Z \in C : \vert Z-1 \vert =1/2 \rbrace $ then $\int_{\gamma}\frac{ze^{1/z}}{z^2-1}dz$ equals
(A) $i\pi e$
(B) $-i\pi e$
(C) $\pi e$
(D) $- \pi e$
PART-C
1.Let P be a square matrix such that $P^2=P$ which of the following statements are true?
(A) Trace of P is an irrational number
(B) Trace of P = rank of P
(C) Trace of P is an integer
(D) Trace of P is an imaginary complex number
No comments:
Post a Comment