CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
3. if $ A= \begin{bmatrix}
3& -2\\
2 & -1
\end{bmatrix} $, then $ A^{20} $ equals (A)$ \begin{bmatrix} 41 & 40 \\ -40 & -39 \end{bmatrix} $ (B)$ \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix} $ (C)$ \begin{bmatrix} 41 & -40 \\ -40 & -39 \end{bmatrix} $ (D)$ \begin{bmatrix} 41 & 40 \\ 40 & -39 \end{bmatrix} $ Solution: Given $ A= \begin{bmatrix}
3& -2\\
2 & -1
\end{bmatrix} $ To find $ A^{20} $
CASE I
Use cayley-Hamilton theorem-every square matrix satisfies its own characteristic equation Let A $= \begin{bmatrix} 3& -2\\ 2 & -1 \end{bmatrix} $
The characteristic equation of A is $ \vert A-\lambda I \vert$ =0
i.e., $\lambda^2- S_{1}\lambda +S_{2}=0 \dots (1) $
where $ S_{1} = $ Sum of the main diagonal elements = 3+(-1)
$ S_{1} $= 2
$ S_{2} = \vert A \vert = \begin{vmatrix} 3& -2\\ 2 & -1 \end{vmatrix}$
= (-3 -(-4)) [$ A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} $
=-3+4 [$ \implies \vert A \vert = (ad-bc) $ ]
$ \vert A \vert$ = 1 The characteristic equation is $ \lambda^2- S_{1}\lambda +S_{2}=0$ [by equation (1)]
$ \lambda^2- 2\lambda +1=0 $ [ $S_{1}=2, S_{2}=1 $]
the characteristic equation $ A^2- 2A+I=0 $ [by cayley Hamilton theorem.] $A^2 $=2A-I
= $2\begin{bmatrix} 3& -2\\ 2 & -1 \end{bmatrix} -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $
= $\begin{bmatrix} 6& -4\\ 4 & -2 \end{bmatrix}-\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $
$ A^2 =\begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}$
$ A^2.A =\begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}.\begin{bmatrix} 3& -2\\ 2 & -1 \end{bmatrix} $
$ A^3 = \begin{bmatrix} 15-8& -10+4\\ 12-6 & -8+3 \end{bmatrix} $
$=\begin{bmatrix} 7 & -6\\ 6 & -5 \end{bmatrix}$
$ A^3.A^2 =\begin{bmatrix} 7 & -6\\ 6 & -5 \end{bmatrix}.\begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}$
$A^5 = \begin{bmatrix} 35-24 & -28+18 \\ 30-20 & -24+15 \end{bmatrix}$
$ A^5 =\begin{bmatrix} 11 & -10 \\ 10 & -9 \end{bmatrix} $
$ A^5 .A^5 =\begin{bmatrix} 11 & -10 \\ 10 & -9 \end{bmatrix}.\begin{bmatrix} 11 & -10 \\ 10 & -9 \end{bmatrix} $
$ A^{10} = \begin{bmatrix} 121-100 & -110+90 \\ 110-90 & -100+81 \end{bmatrix} $
$ A^{10} = \begin{bmatrix} 21 & -20 \\ 20 & -19 \end{bmatrix} $
$ A^{10}.A^{10} =\begin{bmatrix} 21 & -20 \\ 20 & -19 \end{bmatrix}.\begin{bmatrix} 21 & -20 \\ 20 & -19 \end{bmatrix} $
$ A^{20} =\begin{bmatrix} 441-400 & -420+380 \\ 420-380 & -400+361 \end{bmatrix} $
$ A^{20} = \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix} $
The Answer is option (B). $ \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix} $
CASE II
Property of Matrix: Let A be a $n \times n$ matrix if sum of row elements equal to 1 then $ A^n$ Matrix sum of row elements equal to 1.$ \dots (2) $
Given $ A=\begin{bmatrix}3 & -2 \\ 2 & -1 \end{bmatrix} $
the sum of first row =3+(-2)=3-2=1
the sum of second row =-2+(-1)=-2+1=1
the sum of row element is 1 then $ A^{20} $ matrix sum of row elements always equal to 1
Now check the given option
option A: Let $ A^{20}= \begin{bmatrix} 41 & 40 \\ -40 & -39 \end{bmatrix} $
Sum of first row =41+40=81
sum of second row=-40+(-39)=-40-39=-79
Here first and second row not equal to 1.so option A matrix is not correct option option B: Let $ A^{20}= \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix} $
Sum of first row =41+(-40)=41-40=1
sum of second row=40+(-39)=40-39=1
Here first and second row equal to 1.so option B matrix is correct option
\textbf{option C:} Let $ A^{20}= \begin{bmatrix} 41 & -40 \\ -40 & -39 \end{bmatrix} $
Sum of first row =41+(-40)=41-40=1
sum of second row=-40+(-39)=-40-39=-79
Here second row not equal to 1. so option C matrix is not correct option option D: Let $ A^{20}=\begin{bmatrix} 41 & 40 \\ 40 & -39 \end{bmatrix} $
Sum of first row =41+40=81
sum of second row=40+(-39)=40-39=1
Here second row not equal to 1. so option D matrix is not correct option
Hence the correct option B $ A^{20}= \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix}$
3& -2\\
2 & -1
\end{bmatrix} $, then $ A^{20} $ equals
3& -2\\
2 & -1
\end{bmatrix} $ To find $ A^{20} $
CASE I
The characteristic equation of A is $ \vert A-\lambda I \vert$ =0
i.e., $\lambda^2- S_{1}\lambda +S_{2}=0 \dots (1) $
where $ S_{1} = $ Sum of the main diagonal elements
$ S_{2} = \vert A \vert = \begin{vmatrix} 3& -2\\ 2 & -1 \end{vmatrix}$
= (-3 -(-4)) [$ A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} $
=-3+4 [$ \implies \vert A \vert = (ad-bc) $ ]
$ \vert A \vert$ = 1
$ \lambda^2- 2\lambda +1=0 $ [ $S_{1}=2, S_{2}=1 $]
the characteristic equation $ A^2- 2A+I=0 $ [by cayley Hamilton theorem.]
= $2\begin{bmatrix} 3& -2\\ 2 & -1 \end{bmatrix} -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $
= $\begin{bmatrix} 6& -4\\ 4 & -2 \end{bmatrix}-\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $
$ A^2 =\begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}$
$ A^2.A =\begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}.\begin{bmatrix} 3& -2\\ 2 & -1 \end{bmatrix} $
$ A^3 = \begin{bmatrix} 15-8& -10+4\\ 12-6 & -8+3 \end{bmatrix} $
$=\begin{bmatrix} 7 & -6\\ 6 & -5 \end{bmatrix}$
$ A^3.A^2 =\begin{bmatrix} 7 & -6\\ 6 & -5 \end{bmatrix}.\begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}$
$A^5 = \begin{bmatrix} 35-24 & -28+18 \\ 30-20 & -24+15 \end{bmatrix}$
$ A^5 =\begin{bmatrix} 11 & -10 \\ 10 & -9 \end{bmatrix} $
$ A^5 .A^5 =\begin{bmatrix} 11 & -10 \\ 10 & -9 \end{bmatrix}.\begin{bmatrix} 11 & -10 \\ 10 & -9 \end{bmatrix} $
$ A^{10} = \begin{bmatrix} 121-100 & -110+90 \\ 110-90 & -100+81 \end{bmatrix} $
$ A^{10} = \begin{bmatrix} 21 & -20 \\ 20 & -19 \end{bmatrix} $
$ A^{10}.A^{10} =\begin{bmatrix} 21 & -20 \\ 20 & -19 \end{bmatrix}.\begin{bmatrix} 21 & -20 \\ 20 & -19 \end{bmatrix} $
$ A^{20} =\begin{bmatrix} 441-400 & -420+380 \\ 420-380 & -400+361 \end{bmatrix} $
$ A^{20} = \begin{bmatrix} 41 & -40 \\ 40 & -39 \end{bmatrix} $
CASE II
Property of Matrix: Let A be a $n \times n$ matrix if sum of row elements equal to 1 then $ A^n$ Matrix sum of row elements equal to 1.$ \dots (2) $
the sum of first row =3+(-2)=3-2=1
the sum of second row =-2+(-1)=-2+1=1
the sum of row element is 1 then $ A^{20} $ matrix sum of row elements always equal to 1
option A: Let $ A^{20}= \begin{bmatrix} 41 & 40 \\ -40 & -39 \end{bmatrix} $
Sum of first row =41+40=81
sum of second row=-40+(-39)=-40-39=-79
Here first and second row not equal to 1.
Sum of first row =41+(-40)=41-40=1
sum of second row=40+(-39)=40-39=1
Here first and second row equal to 1.
Sum of first row =41+(-40)=41-40=1
sum of second row=-40+(-39)=-40-39=-79
Sum of first row =41+40=81
sum of second row=40+(-39)=40-39=1
Here second row not equal to 1.
so option D matrix is not correct option
No comments:
Post a Comment