KING OF MATHEMATICA

CSIR NET/JRF MATHS QUESTION AND SOLUTION ,CSIR NET/JRF NOTES

Sunday, June 6, 2021

3.CSIR NET MATHS 2020-JUNE PART B

 

CSIR NET MATHEMATICS 2020-JUNE

HELD ON 26TH-NOVEMBER 

PART-B


 

3. if $ A= \begin{bmatrix}
3& -2\\
2 & -1
\end{bmatrix} $, then $ A^{20} $ equals
 
 
(A)$  \begin{bmatrix} 41 & 40  \\ -40 & -39  \end{bmatrix} $
 
(B)$  \begin{bmatrix} 41 & -40  \\ 40 & -39  \end{bmatrix} $
 
(C)$  \begin{bmatrix} 41 & -40  \\ -40 & -39  \end{bmatrix} $
 
(D)$  \begin{bmatrix} 41 & 40  \\ 40 & -39  \end{bmatrix} $ 
 
 
Solution: Given      $ A= \begin{bmatrix}
3& -2\\
2 & -1
\end{bmatrix} $    To find $ A^{20} $


CASE I

 
Use cayley-Hamilton theorem-every square matrix satisfies its own characteristic  equation
 
Let A $= \begin{bmatrix} 3& -2\\ 2 & -1  \end{bmatrix} $
 
The characteristic  equation of  A  is $ \vert A-\lambda I \vert$ =0 

i.e., $\lambda^2-  S_{1}\lambda  +S_{2}=0 \dots (1) $ 

where $  S_{1} = $ Sum of    the  main  diagonal   elements 
 
= 3+(-1)
 
$ S_{1} $= 2

$ S_{2}  = \vert A \vert = \begin{vmatrix}  3& -2\\  2 & -1  \end{vmatrix}$

 = (-3 -(-4))         [$ A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} $

 =-3+4              [$ \implies \vert A \vert = (ad-bc) $ ]
 
$ \vert A \vert$  = 1 
 
 
The  characteristic equation  is $  \lambda^2-  S_{1}\lambda  +S_{2}=0$            [by  equation (1)]

 $ \lambda^2-  2\lambda  +1=0 $ [ $S_{1}=2, S_{2}=1 $]
 
  the    characteristic    equation  $  A^2- 2A+I=0  $  [by  cayley  Hamilton  theorem.]
 
 $A^2 $=2A-I
 
  = $2\begin{bmatrix}  3& -2\\  2 & -1  \end{bmatrix} -\begin{bmatrix}  1 & 0 \\  0 & 1  \end{bmatrix} $

  = $\begin{bmatrix}  6& -4\\  4 & -2  \end{bmatrix}-\begin{bmatrix}  1 & 0 \\  0 & 1  \end{bmatrix} $

$ A^2  =\begin{bmatrix}  5 & -4 \\  4 & -3  \end{bmatrix}$

  $ A^2.A =\begin{bmatrix}  5 & -4 \\  4 & -3  \end{bmatrix}.\begin{bmatrix}  3& -2\\  2 & -1  \end{bmatrix} $

  $ A^3  = \begin{bmatrix}  15-8& -10+4\\  12-6 & -8+3  \end{bmatrix} $

  $=\begin{bmatrix}  7 & -6\\  6 & -5  \end{bmatrix}$

 $ A^3.A^2 =\begin{bmatrix}  7 & -6\\  6 & -5  \end{bmatrix}.\begin{bmatrix}  5 & -4 \\  4 & -3  \end{bmatrix}$

  $A^5 = \begin{bmatrix}  35-24 & -28+18 \\  30-20 & -24+15  \end{bmatrix}$

 $ A^5 =\begin{bmatrix}  11 & -10 \\  10 & -9  \end{bmatrix} $

 $  A^5 .A^5 =\begin{bmatrix}  11 & -10 \\  10 & -9  \end{bmatrix}.\begin{bmatrix}  11 & -10 \\  10 & -9  \end{bmatrix} $

 $  A^{10} = \begin{bmatrix}  121-100 & -110+90 \\  110-90 & -100+81  \end{bmatrix} $

  $ A^{10} = \begin{bmatrix} 21 & -20 \\  20 & -19  \end{bmatrix} $

  $ A^{10}.A^{10} =\begin{bmatrix} 21 & -20 \\  20 & -19  \end{bmatrix}.\begin{bmatrix} 21 & -20 \\  20 & -19  \end{bmatrix} $ 

  $ A^{20} =\begin{bmatrix} 441-400 & -420+380 \\ 420-380 & -400+361  \end{bmatrix} $

 $  A^{20} = \begin{bmatrix} 41 & -40 \\  40 & -39  \end{bmatrix} $

 
 The Answer is option  (B). $  \begin{bmatrix} 41 & -40  \\ 40 & -39  \end{bmatrix} $
 
 

CASE II

Property of Matrix: Let A be a $n \times n$ matrix if sum of   row elements equal to 1 then $ A^n$  Matrix sum of row elements equal to 1.$ \dots (2) $
 
Given $ A=\begin{bmatrix}3 & -2 \\ 2 & -1 \end{bmatrix} $


the sum of first row =3+(-2)=3-2=1

the sum of second row =-2+(-1)=-2+1=1

the sum of row element is 1 then $ A^{20} $ matrix sum of row elements always equal to 1

Now check the given option

option A: Let $ A^{20}=  \begin{bmatrix} 41 & 40  \\ -40 & -39  \end{bmatrix} $

Sum of first row =41+40=81

sum of second row=-40+(-39)=-40-39=-79

Here first and second row not equal to 1.
so option A matrix is not correct option
 
option B: Let $ A^{20}=    \begin{bmatrix} 41 & -40  \\ 40 & -39  \end{bmatrix}  $

Sum of first row =41+(-40)=41-40=1

sum of second row=40+(-39)=40-39=1

Here first and  second row  equal to 1.
so option B  matrix is  correct option
 
\textbf{option C:} Let $ A^{20}= \begin{bmatrix} 41 & -40  \\ -40 & -39  \end{bmatrix}  $

Sum of first row =41+(-40)=41-40=1

sum of second row=-40+(-39)=-40-39=-79
 
Here   second row not  equal to 1.
 
so option C  matrix is not correct option
 
option D: Let $ A^{20}=\begin{bmatrix} 41 & 40  \\ 40 & -39  \end{bmatrix}  $

Sum of first row =41+40=81

sum of second row=40+(-39)=40-39=1

Here   second row not  equal to 1.
 
so option D  matrix is not correct option

Hence the correct option B $ A^{20}=    \begin{bmatrix} 41 & -40  \\ 40 & -39  \end{bmatrix}$ 
 
 
CSIR NET/JRF SOLUTIN




 
CSIR NET/JRF SOLUTION

CSIR NET/JRF SOLUTION



No comments:

Post a Comment