CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
6.Let $\gamma$ be the positively oriented circle in the complex plane given by $\lbrace Z \in C : \vert Z-1 \vert =1 \rbrace $ then $\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z^3-1}$ equals
(A) 3
(B)1/3
(C)1/2
(D)2
Solution
By cauchy's integral formula is
$ \int_C \frac{f(z)}{z-a}dz=2\pi i f(a) $
Given
$ \frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z^3-1} =\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{(z-1)(z^2+z+1)} $ [ $a^3-b^3=(a-b)(a^2+ab+b^2)$ ]
=$ \frac{1}{2\pi i}\int_{\gamma}\frac{\frac{1}{z^2+z+1}}{z-1}dz $
Also Given$ Z \in C : \vert Z-1 \vert =1 $
$ \vert Z-1 \vert =$ 1 [Given ]
$ \vert x+iy-1 \vert =$ 1 Given Z=x+iy
$\vert x-1+iy \vert$ =1
$ (x-1)^2+y^2$ =1 This is circle equation
Here centre is (1,0) and radius r=1 [$x-1=0\implies x=1$ and $y=0$ ]
z-1=0 $ \implies$ z=1 lies inside C:$ \vert z-1 \vert $ =1
Here $f(z)=\frac{1}{z^2+z+1}$ is analytic inside C
$ \int_C \frac{f(z)}{z-a} $ dz = $ 2\pi i f(a) $
$\frac{1}{2\pi i}\int_{\gamma}\frac{\frac{1}{z^2+z+1}}{z-1}$ dz = $ \frac{1}{2\pi i} 2\pi i f(1) $
$ =\frac{1}{2\pi i} 2\pi i \frac{1}{1^2+1+1} $ [$ f(z)=\frac{1}{z^2+z+1} $]
$ \frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z^3-1} $ = $ \frac{1}{3} $
No comments:
Post a Comment