CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
8.Let $\gamma$ be the positively oriented circle in the complex plane given by $\lbrace Z \in C : \vert Z-1 \vert =1/2 \rbrace $ then $\int_{\gamma}\frac{ze^{1/z}}{z^2-1}dz$ equals
(A) $i\pi e$
(B) $-i\pi e$
(C) $\pi e$
(D) $- \pi e$
Solution: By cauchy's integral formula is
\[ \int_C \frac{f(z)}{z-a}dz=2\pi i f(a)\]
Given
$ \int_{\gamma}\frac{ze^{1/z}}{z^2-1}dz$ = $ \int_{\gamma}\frac{ze^{1/z}}{(z^2-1^2}dz$ [$ a^2-b^2=(a-b)(a+b) $ ]
= $ \int_{\gamma}\frac{ze^{1/z}}{(z-1)(z+1)}dz $
Also Given$ Z \in C : \vert Z-1 \vert =1/2 $
$ \vert Z-1 \vert = 1/2 $ [Given]
$ \vert x+iy-1 \vert = 1/2 $ [given Z=x+iy ]
$ \vert x-1+iy \vert = 1/2 $
$ (x-1)^2+y^2=(1/2)^2 $ [This is circle equation]
Here centre is (1,0) and radius r=1/2 [$x-1=0\implies x=1$ and $y=0$ ]
z+1=0 $ \implies $ z=-1 lies outside $ C: \vert z-1 \vert =1/2 $
$ \int_{\gamma}\frac{ze^{1/z}}{(z-1)(z+1)}dz =\int_{\gamma}\frac{\frac{ze^{1/z}}{z+1}}{z-1}dz $
Here $f(z)=\frac{ze^{1/z}}{z+1}$ is analytic inside C.
Hence by Cauchy's integral formula
Hence by Cauchy's integral formula
$ \int_C \frac{f(z)}{z-a}dz =2\pi i f(a) $
$ \int_{\gamma}\frac{\frac{ze^{1/z}}{z+1}}{z-1}dz = 2\pi i f(1) $
= $ 2\pi i \frac{(1)e^{1/1}}{1+1} $ [$ f(z)=\frac{ze^{1/z}}{z+1} $]
= $ 2 \pi i \frac{e}{2} $
$ \int_{\gamma}\frac{ze^{1/z}}{z^2-1}dz =i \pi e $
No comments:
Post a Comment