CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
7.The maximum and minimum values of $5x+7y$,when $\vert x\vert +\vert y \vert \leq 1$
(A)5 and -5
(B) 5 and -7
(C) 7 and -5
(D) 7 and -7
Solution; Given $Z=5x+7y$
constraint $\vert x\vert +\vert y \vert \leq 1$ \
Here
$ \vert x \vert $ =$ \begin{cases}
x \enspace if x \geq 0 \\
-x \enspace if x <0
\end{cases}$
x \enspace if x \geq 0 \\
-x \enspace if x <0
\end{cases}$
$ \vert y \vert $ = $ \begin{cases}
y \enspace if y \geq 0 \\
-y \enspace if y <0 \end{cases}$
y \enspace if y \geq 0 \\
-y \enspace if y <0 \end{cases}$
Now constraint take as
x+y $ \leq $ 1
-x+y $ \leq $ 1
x-y $ \leq $ 1
-x-y $ \leq $ 1
Let take inequality constraint as equality
x+y = 1
x+y = 1
-x+y = 1
x-y = 1
-x-y = 1
From equation (1) becomes $x+y = 1 $
x=0 $ \implies $ 0+y=1 $ \implies $ y=1 $ \implies $ (0,1)
y =0 $ \implies $ x+0=1 $ \implies $ x=1 $ \implies $ (1,0)
The first constraint point (0,1) and (1,0)
From equation (2) becomes $-x+y = 1 $
x =0 $ \implies $ 0+y=1 $ \implies$ y=1 $ \implies $(0,1)
x =0 $ \implies $ 0+y=1 $ \implies$ y=1 $ \implies $(0,1)
y=0 $ \implies $ -x+0=1 $ \implies $ -x=1 $ \implies $ x=-1 $ \implies $ (-1,0)
The second constraint point (0,1) and (-1,0)
From equation (3) becomes $x-y = 1 $
x =0 $ \implies $ 0-y=1 $ \implies $ -y=1 $ \implies $ y=-1 $ \implies $ (0,-1)
x =0 $ \implies $ 0-y=1 $ \implies $ -y=1 $ \implies $ y=-1 $ \implies $ (0,-1)
y=0 $ \implies $ x-0=1 $ \implies $ x=1 $ \implies $ (1,0)
The third constraint point (0,-1) and (1,0)
From equation (4) becomes $-x-y = 1 $
x=0 $ \implies $ 0-y=1 $ \implies $ -y=1 $ \implies $ y=-1 $ \implies $ (0,-1)
x=0 $ \implies $ 0-y=1 $ \implies $ -y=1 $ \implies $ y=-1 $ \implies $ (0,-1)
y=0 $ \implies $ -x-0=1 $ \implies $ -x=1 $ \implies $ x=-1 $ \implies $ (-1,0)
The fourth constraint point (0,-1) and (-1,0)
The closed polygon $A-B-C-D$ is the feasible region
The feasible region is also known as solution space of LPP.
The extreme points are $A(1,0),B(0,1),C(-1,0),D(0,-1)$
The extreme points of the solution space are
Extreme point Vertices Value of Z=5x+7y
A (1,0) z=5(1)+7(0)=5
B (0,1) z=5(0)+7(1)=7
C (-1,0) z=5(-1)+7(0)=-1
D (0,-1) z=5(0)+7(-1)=-7
The maximum value of Z is 7 and minimum value of Z is -7
Hence correct option (D) 7 and -7
No comments:
Post a Comment