CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
4.Let A be a $ 2 \times 2 $ real matrix with $ \det A=1 $ and trace A=3.what is the value of trace $ A^2$
(A)2
(B)10
(C)9
(D)7
solution:
CASE I
Given Let A be a $ 2 \times 2 $ real matrix with $ \det A=1 $ and trace A=3\\
To find trace $ A^2$\\
Matrix property 1.The sum of eigenvalue of a matrix is equal to the trace of matrix.product of the eigenvalue is equal to the determinant of the matrix.
Matrix Property 2.If $ \lambda_{1},\lambda_{2},\dots,\lambda_{n} $ are the Eigenvalue of the matrix A, then $ A^m$ has Eigenvalue of $ \lambda_{1}^{m},\lambda_{2}^{m},\dots,\lambda_{n}^{m} $
Matrix Property 3. The Eigenvalue of a diagonal matrix are just the diagonal elements of the matrix.
Let assume the matrix $ A=\begin{bmatrix}
a& 0\\
0 & b
\end{bmatrix} $ [given $ 2 \times 2 $ Matrix ]
$A =\begin{bmatrix} a& 0\\ 0 & b \end{bmatrix} $
sum of diagonal elements =trace of A=3 [given trace A=3]
$ \implies a+b=3 \dots \dots (1)$
$ \det A = \vert A \vert =1 $ [Given det A=1]
$ \vert A \vert $ =(ab-0.0)=1 [ A =$ \begin{bmatrix} a& b\\ c & d \end{bmatrix} \implies \vert A\vert =ad-bc $]
$ \vert A \vert =ab=1 \dots \dots (2)$
A =$ \begin{bmatrix} a& 0\\ 0 & b \end{bmatrix} $
The Eigenvalue Of Diagonal Matrix A =a.b [by Matrix Property 3]
Sum of eigenvalue of A =a+b=3 [by equation 1]
product of Eigenvalue of A =ab=1 [by equation 2]
$\implies $ ab=1
a(3-a)=1 [ a+b=3 $ \implies b=3-a]
$ 3a-a^2=1$
$1-3a+a^2 =0$
$a^2-3a+1$=0
a =$ \frac{-b \pm \sqrt{b^2-4ac}}{2a} $
a = $ \frac{-(-3) \pm \sqrt{(-3)^2-4(1)(1)}}{2(1)}$ [a=1,b=-3,c=1]
a =$\frac{ 3 \pm \sqrt{9-4}}{2} $
a = $ \frac{ 3 \pm \sqrt{5}}{2} $
a =$ \frac{ 3 \pm \sqrt{5}}{2} $
Equation 1 becomes
a+b = 3
b =3-a
b =$ 3-\frac{ 3 + \sqrt{5}}{2}$ [a =$ \frac{ 3 + \sqrt{5}}{2}$ ]
b =$ \frac{ 6-3 -\sqrt{5}}{2} $
b =$ \frac{ 3 - \sqrt{5}}{2} $
(Or)
Equation 1 becomes
a+b = 3
b =3-a
b =3-$ \frac{ 3 - \sqrt{5}}{2}$ [a =$ \frac{ 3 - \sqrt{5}}{2}$ ]
b =$ \frac{ 6-3 + \sqrt{5}}{2} $
b =$ \frac{ 3 + \sqrt{5}}{2} $
the matrix A = $ \begin{bmatrix}
a& 0\\
0 & b \end{bmatrix}$
a& 0\\
0 & b \end{bmatrix}$
A = $ \begin{bmatrix}
\frac{ 3 + \sqrt{5}}{2} & 0\\
0 & \frac{ 3 - \sqrt{5}}{2}
\end{bmatrix}$ [$ a=\frac{ 3 + \sqrt{5}}{2} and b=\frac{ 3 - \sqrt{5}}{2}$ ]
\frac{ 3 + \sqrt{5}}{2} & 0\\
0 & \frac{ 3 - \sqrt{5}}{2}
\end{bmatrix}$ [$ a=\frac{ 3 + \sqrt{5}}{2} and b=\frac{ 3 - \sqrt{5}}{2}$ ]
The Eigenvalue Of Diagonal Matrix A are $ \frac{ 3 + \sqrt{5}}{2} and \frac{ 3 - \sqrt{5}}{2} $ [by Matrix Property 3]
The Eigenvalue Of Diagonal Matrix A^2 are $ \left( \frac{ 3 + \sqrt{5}}{2}\right)^2 and \left( \frac{ 3 - \sqrt{5}}{2} \right)^2 $ [by Matrix Property 2]
Trace \enspace of $ A^2$ = Sum of Eigenvalue of $ A^2 $ [by Matrix Property 1]
Trace of $A^2 = \left( \frac{ 3 + \sqrt{5}}{2}\right)^2 + \left( \frac{ 3 - \sqrt{5}}{2} \right)^2 $
=$ \frac{ (3 + \sqrt{5})^2 }{2^2} + \frac{ ( 3 - \sqrt{5} )^2 }{2^2}$
[ $ (a+b)^2=a^2+b^2+2ab,$ and $(a-b)^2=a^2+b^2-2ab $]
= $ \frac{ 9 + 5+6\sqrt{5}}{4} + \frac{ 9 + 5-6\sqrt{5} }{4} $
= $ \frac{ 14+6\sqrt{5}+14-6\sqrt{5} }{4} $
=$ \frac{ 28}{4} $
Trace of $ A^2 $= 7
No comments:
Post a Comment