CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
1. $ f:N\rightarrow N $ be bounded function.which the following statement is NOT true?
(A) $ {\lim}_{n \to \infty }\sup f(n) \in N $
(B) $ \lim_{n \to \infty }\inf f(n) \in N $
(C)$ \lim_{n \to \infty }\inf( f(n)+n) \in N $
(D)$ \lim_{n \to \infty }\sup( f(n)+n) \notin N $
Solution:
$ f:N\rightarrow N $ be bounded function
let assume $ f(n)=c \quad where \quad \inf f \leq f(n) \leq \sup f and c \in N $
[ f is said to be bounded if its range is both bounded above and below.
i.e f is bounded then $ \inf f \leq f(n) \leq \sup f $ for every $ x \in N $.]
let n=1 we get f(1)=c , $ 1 \in N $\
$ \implies n=2 $ we get f(2)=c $ 2 \in N $
; : : : :
; : : : :
: : : : :
n=n we get f(n)=c $ n \in N $
the range of the function is = { c,c,... ,c }
(A) let $ \lim_{n \to \infty }\sup f(n) \in N $
$ \lim_{x \to \infty }\sup f(n) =\lim_{n \to \infty }\ c$ [ $\sup f(n)=c$ , by above range of function]
$ =c \in N $ [$\lim_{n \to \infty }\ c=c$]
The A statement is $ \lim_{n \to \infty }\sup f(n) \in N $
The A statement is true
(B) let $ \lim_{n \to \infty }\inf f(n) \in N $
$ \implies \lim_{x \to \infty }\inf f(n) =\lim_{n \to \infty }\ c$ [ $\inf f(n)=c$ , by above range of function]
$ =c \in N $ [$\lim_{n \to \infty }\ c=c$]
The B statement is $ \lim_{n \to \infty }\inf f(n) \in N $
The B statement is true
(C) let $ \lim_{n \to \infty }\inf ( f(n)+n) \in N $
$ \lim_{n \to \infty }\inf ( f(n)+n)$
=$ \lim_{n \to \infty }\ c+n $
=$c+\infty$
=$ \infty \in N $ [ $c+\infty=\infty $]
The C statement is $ \lim_{n \to \infty }\inf (f(n)+n) \in N $
The C statement is true
(D) let $ \lim_{n \to \infty }\sup ( f(n)+n) \notin N $
$ \lim_{n \to \infty }\sup ( f(n)+n)$
=$ \lim_{n \to \infty }\ c+n $
=$c+\infty$
=$ \infty \in N $ [ $c+\infty=\infty $]
The C statement is $ \lim_{n \to \infty }\inf (f(n)+n) \notin N $
The D statement is not true
No comments:
Post a Comment