CSIR NET MATHEMATICS 2020-JUNE
HELD ON 26TH-NOVEMBER
PART-B
5.Which of the following real quadratic forms on $R^2$ is positive definite?
(A)$Q(X,Y)=XY$
(B)$Q(X,Y)=(X^2+XY)$
(C)$Q(X,Y)=X^2+2XY+Y^2$
(D)$Q(X,Y)=X^2-XY+Y^2$
Solution:Let quadratic form on $R^2=(X,Y)$
let denote $Q(X,Y)=aX^2+bXY+cY^2$ is a quadratic form on $R^2$
The matrx corresponding to the quadratic form is
Q(X,Y)=$ \begin{bmatrix}
co.efficient of X^2 & \frac{1}{2} co.efficient of XY \\
\frac{1}{2} co.efficient of YX & co.efficient of Y^2
\end{bmatrix} $
co.efficient of X^2 & \frac{1}{2} co.efficient of XY \\
\frac{1}{2} co.efficient of YX & co.efficient of Y^2
\end{bmatrix} $
Q(X,Y) =$ \begin{bmatrix}
a & \frac{1}{2} b \\
\frac{1}{2} b & c
\end{bmatrix}$
Test the Nature of a quadratic form through principal minors
Let $A=[a_{ij}]$ be the matrix of the quadratic form in n variables $x_1,x_2,\dots,x_n$.Then A is a square symmetric matrix of order n
Let $D_1,D_2,D_3,\dots,D_n $are the principal minors of A
[i] The Qudratic form is Positive definite if $D_1,D_2,D_3,\dots,D_n $ are all positive
[ i.e D_n>0 forall n ]
[ i.e D_n>0 forall n ]
[ii] The Qudratic form is Negative definite if $D_1,D_3,D_5,\dots, $ are all negative e and $D_2,D_4,D_6,\dots, $ are all positive
[ i.e, (-1)^n D_n >0 forall n ]
[iii] The Qudratic form is Positive semi definite if $D_n \geq 0$ are all positive and atleast one $D_i=0$
[iv] The Qudratic form is Negative semi definite if $(-1)^n D_n \geq 0$ and atleast one $D_i=0$
[v] The Qudratic form is indefinite in all other cases
OPTION A: $Q(X,Y)=XY$
The matrix corresponding to the quadratic form is
Q(X,Y) = $ \begin{bmatrix}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{bmatrix} $
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{bmatrix} $
Let the principal minors of $Q(X,Y)$
$ \vert D_1 \vert =\begin{vmatrix}
0
\end{vmatrix} $=0
0
\end{vmatrix} $=0
=$ \begin{vmatrix}
0
\end{vmatrix} $ =0
Hence for all $D_1 \geq 0$
$ \vert D_2 \vert =\begin{vmatrix}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{vmatrix}$ = $ 0-\frac{1}{2} \times \frac{1}{2} $=$ 0-\frac{1}{4} $
=-1/4
Hence $D_2 < 0 $
$ and $ D_2 <0 $ is indefinte.
So option A is not correct
OPTION B $Q(X,Y)=(X^2+XY)$
The matrix corresponding to the quadratic form is
Q(X,Y)=$ \begin{bmatrix}
1 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{bmatrix} $
1 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{bmatrix} $
Let the principal minors of $Q(X,Y)$
$ \vert D_1 \vert =\begin{vmatrix}
1
\end{vmatrix}$ =1
1
\end{vmatrix}$ =1
=$\begin{vmatrix}
0
\end{vmatrix} $=0
0
\end{vmatrix} $=0
Hence for all $D_1 \geq 0$
$ \vert D_2 \vert =\begin{vmatrix}
1 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{vmatrix}=0-\frac{1}{2} \times\frac{1}{2}=0-\frac{1}{4}=\frac{-1}{4} $
1 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{vmatrix}=0-\frac{1}{2} \times\frac{1}{2}=0-\frac{1}{4}=\frac{-1}{4} $
Hence $D_2 < 0 $
i.e., $D_1\geq 0 $ and $ D_2 <0 $ is indefinite
So option B is not correct
OPTION C $Q(X,Y)=(X^2+2XY+Y^2)$
The matrix corresponding to the quadratic form is
Q(X,Y)=$ \begin{bmatrix}
1 & \frac{1}{2}2 \\
\frac{1}{2} 2 & 1
\end{bmatrix}$ =$ \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} $
1 & \frac{1}{2}2 \\
\frac{1}{2} 2 & 1
\end{bmatrix}$ =$ \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} $
Let the principal minors of $Q(X,Y)$
$\vert D_1 \vert =\begin{vmatrix}
1
\end{vmatrix}$ =1
1
\end{vmatrix}$ =1
=$ \begin{vmatrix}
1
\end{vmatrix} $ =1
Hence for all $D_1 > 0$
$ \vert D_2 \vert =\begin{vmatrix}
1 & 1 \\
1 & 1
\end{vmatrix} $=1-1 =0
1 & 1 \\
1 & 1
\end{vmatrix} $=1-1 =0
Hence $D_2 =0 $
i.e., $D_1 > 0 $ and $ D_2 =0 $ is Positive semi definite
So option C is not correct
OPTION D $Q(X,Y)=X^2-XY+Y^$2
The matrix corresponding to the quadratic form is
Q(X,Y)=$ \begin{bmatrix}
1 & \frac{1}{2}(-1) \\
\frac{1}{2} (-1) & 1
\end{bmatrix}$ =$ \begin{bmatrix}
1 & \frac{-1}{2} \\
\frac{-1}{2} & 1
\end{bmatrix} $
1 & \frac{1}{2}(-1) \\
\frac{1}{2} (-1) & 1
\end{bmatrix}$ =$ \begin{bmatrix}
1 & \frac{-1}{2} \\
\frac{-1}{2} & 1
\end{bmatrix} $
Let the principal minors of $Q(X,Y)$
$ \vert D_1 \vert =\begin{vmatrix}
1
\end{vmatrix} $ =1
1
\end{vmatrix} $ =1
=$ \begin{vmatrix}
1
\end{vmatrix} $ =1
Hence for all $D_1 > 0$
$ \vert D_2 \vert =\begin{vmatrix}
1 & \frac{-1}{2} \\
\frac{-1}{2} & 1
\end{vmatrix} $ =$ 1-\frac{-1}{2}\times \frac{-1}{2} =1-\frac{1}{4}=\frac{4-1}{4}=\frac{3}{4} $
1 & \frac{-1}{2} \\
\frac{-1}{2} & 1
\end{vmatrix} $ =$ 1-\frac{-1}{2}\times \frac{-1}{2} =1-\frac{1}{4}=\frac{4-1}{4}=\frac{3}{4} $
Hence $D_2 >0 $
i.e., $D_1 > 0 $ and $ D_2 >0 $ is Positive definite
So option (D) $Q(X,Y)=X^2-XY+Y^$2 is correct
No comments:
Post a Comment