KING OF MATHEMATICA

CSIR NET/JRF MATHS QUESTION AND SOLUTION ,CSIR NET/JRF NOTES

Thursday, June 10, 2021

5.CSIR NET MATHS 2020-JUNE PART B

 

CSIR NET MATHEMATICS 2020-JUNE

HELD ON 26TH-NOVEMBER 

PART-B


5.Which of the following real quadratic forms on $R^2$ is positive definite?

(A)$Q(X,Y)=XY$

(B)$Q(X,Y)=(X^2+XY)$

(C)$Q(X,Y)=X^2+2XY+Y^2$

(D)$Q(X,Y)=X^2-XY+Y^2$

Solution:Let quadratic form on $R^2=(X,Y)$ 

let denote $Q(X,Y)=aX^2+bXY+cY^2$ is a quadratic form on $R^2$

The matrx corresponding to the quadratic form is

Q(X,Y)=$ \begin{bmatrix}
    co.efficient of X^2  & \frac{1}{2} co.efficient of XY \\
        \frac{1}{2} co.efficient of YX &     co.efficient of Y^2
\end{bmatrix} $

Q(X,Y) =$ \begin{bmatrix}
    a  & \frac{1}{2} b \\
    \frac{1}{2} b &      c
\end{bmatrix}$     
 
Test the Nature of a quadratic form through principal minors

Let $A=[a_{ij}]$ be the matrix of the quadratic form in n variables $x_1,x_2,\dots,x_n$.Then A is a square symmetric matrix of order n

Let $D_1,D_2,D_3,\dots,D_n $are the principal minors of A  
 
    [i] The Qudratic form is Positive definite if  $D_1,D_2,D_3,\dots,D_n $ are all positive
    [ i.e  D_n>0 forall   n ]

    [ii] The Qudratic form is Negative definite if  $D_1,D_3,D_5,\dots, $ are all negative e and $D_2,D_4,D_6,\dots, $ are all positive
    [ i.e, (-1)^n D_n >0 forall   n ]

    [iii] The Qudratic form is Positive semi definite if  $D_n \geq 0$ are all positive and atleast one  $D_i=0$
  
  [iv]  The Qudratic form is Negative semi  definite if $(-1)^n D_n \geq 0$  and atleast one  $D_i=0$

   [v] The Qudratic form is indefinite in all other cases   
 
OPTION A:  $Q(X,Y)=XY$

The matrix corresponding to the quadratic form is

    Q(X,Y) = $ \begin{bmatrix}
        0  & \frac{1}{2}  \\
        \frac{1}{2}  &  0
    \end{bmatrix} $ 

Let the principal minors of $Q(X,Y)$

  $  \vert D_1 \vert =\begin{vmatrix}
    0
    \end{vmatrix} $=0

=$ \begin{vmatrix}
0
\end{vmatrix} $ =0

Hence for all $D_1 \geq 0$

    $ \vert D_2 \vert =\begin{vmatrix}
            0  & \frac{1}{2}  \\
        \frac{1}{2}  &  0
    \end{vmatrix}$  = $ 0-\frac{1}{2} \times \frac{1}{2} $=$ 0-\frac{1}{4} $ 
 
=-1/4

Hence $D_2 < 0 $
 
  $ and $ D_2 <0 $ is indefinte.

So option A is not correct

OPTION B $Q(X,Y)=(X^2+XY)$

The matrix corresponding to the quadratic form is

    Q(X,Y)=$ \begin{bmatrix}
        1  & \frac{1}{2}  \\
        \frac{1}{2}  &  0
    \end{bmatrix} $ 

Let the principal minors of $Q(X,Y)$

 $   \vert D_1 \vert =\begin{vmatrix}
        1
    \end{vmatrix}$ =1
    
=$\begin{vmatrix}
        0
    \end{vmatrix} $=0

Hence for all $D_1 \geq 0$

   $  \vert D_2 \vert =\begin{vmatrix}
        1  & \frac{1}{2}  \\
        \frac{1}{2}  &  0
    \end{vmatrix}=0-\frac{1}{2} \times\frac{1}{2}=0-\frac{1}{4}=\frac{-1}{4} $

Hence $D_2 < 0 $

    i.e., $D_1\geq 0 $ and $ D_2 <0 $ is indefinite

So option B is not correct
 
OPTION C $Q(X,Y)=(X^2+2XY+Y^2)$
 
The matrix corresponding to the quadratic form is 
 
Q(X,Y)=$ \begin{bmatrix}
        1  & \frac{1}{2}2  \\
        \frac{1}{2} 2 &  1
    \end{bmatrix}$ =$ \begin{bmatrix}
    1  & 1 \\
1  &  1
\end{bmatrix}  $
 
Let the principal minors of $Q(X,Y)$
 
$\vert D_1 \vert =\begin{vmatrix}
        1
    \end{vmatrix}$ =1

   =$ \begin{vmatrix}
        1
    \end{vmatrix} $ =1 
 
Hence for all $D_1 >  0$
 
   $ \vert D_2 \vert =\begin{vmatrix}
        1  & 1  \\
        1  &  1
    \end{vmatrix} $=1-1 =0 
 
Hence $D_2 =0  $
 
i.e., $D_1 > 0 $ and $ D_2 =0  $ is Positive semi  definite
 
So option C is not correct  
 
OPTION D $Q(X,Y)=X^2-XY+Y^$2
 
The matrix corresponding to the quadratic form is 
 
    Q(X,Y)=$ \begin{bmatrix}
        1  & \frac{1}{2}(-1)  \\
        \frac{1}{2} (-1) &  1
    \end{bmatrix}$ =$ \begin{bmatrix}
        1  & \frac{-1}{2} \\
        \frac{-1}{2}  &  1
    \end{bmatrix} $
 
Let the principal minors of $Q(X,Y)$
 
    $ \vert D_1 \vert =\begin{vmatrix}
        1
    \end{vmatrix} $ =1

    =$ \begin{vmatrix}
        1
    \end{vmatrix} $ =1 
 
Hence for all $D_1 >  0$
 
   $  \vert D_2 \vert =\begin{vmatrix}
        1  & \frac{-1}{2} \\
    \frac{-1}{2} &  1
    \end{vmatrix} $ =$ 1-\frac{-1}{2}\times \frac{-1}{2} =1-\frac{1}{4}=\frac{4-1}{4}=\frac{3}{4}  $
 
Hence $D_2 >0 $
 
i.e., $D_1 > 0 $ and $ D_2 >0  $ is Positive  definite
 
So option (D) $Q(X,Y)=X^2-XY+Y^$2 is correct 
 
 



CSIR NET MATHS 2020
CSIR NET MATHS 2020


CSIR NET MATHS 2020


No comments:

Post a Comment